

Er80-4/125-HD-PM 保偏铒高掺杂光纤 800-980nm

产品描述

LIEKKI™ Er80-4/125-HD-PM 光纤光纤是一种高掺杂的,专为光纤设计的保偏铒光 纤激光。纤芯折射率分布专为正常色散高于标准阶跃折射率光纤。高铒浓度提供 了强大的增益和减少所需的应用长度,以 Max. 限度地减少非线性效应。这使得 这种纤维 te 别适用于超短脉冲应用

产品特点

优秀的吸收和光谱形状一致性, 高掺杂浓度使得所需光纤较短, 从而降低非线 性效应, 很好的温度稳定性, 低熔接损耗, 直接纳米颗粒沉积, 行业优秀的 纤维沉积工艺, 高铒掺杂, 可实现短应用长度和低非线性, 不一样的光纤设计, 可实现高法向色散, 适用于 980nm 和 1480nm 泵浦

产品型号

Er80-4/125-HD-PM

(fs) 脉冲放大器和激光器 需要低非线性和高法向色散的应用 超短

中级功率的低非线性效应应用领域 脉冲激光器和放大器 激光雷达 医疗领域

适用于980nm或1480nm泵浦 超短脉冲(femtosecond)放大器 光纤传感

激光器

核心参数

截止波长	数值孔径
800-980 nm	0.2

通用参数

模场直径 @1550nm	6.5 ± 0.5 um	
纤芯吸收峰值@1530nm	80 ± 8 dB/m	
纤芯数值孔径	0.2	
截止波长	800-980 nm	
纤芯/包层偏差	< 0.7 um	
包层直径	125 ± 2 um	
包层形状	圆形	
涂覆层直径	245 ± 15 um	
涂覆层材料	高折射率丙烯酸酯	
压力测试水平	> 100 Kpsi	
包层物理结构 圆,熊猫型		

色散值 at 1550 nm(nominal) 1	-22ps/(nm*km)
双折射, ≥	1E-04

常见参数问题

常见参数问题:

掺铒光纤

nLIGHT 掺铒光纤的吸收和发射截面是多少?

请联系 nLIGHT 光纤代表以接收 nLIGHT 掺铒光纤吸收和发射截面的代表性数据。

nLIGHT 标准掺铒光纤的色散是多少?

我们的掺铒光纤的色散参数敏感地取决于纤芯直径和纤芯数值孔径。根据假设标称芯径和 NA 的模拟,可

以预期色散参数在以下范围内:

Erxxx-4/125-12-18

Erxxx-8/125 10. . . 16

*适用于 1500 nm 至 1600 nm 的波长范围

光纤几何结构标称色散[ps/(nm*km)]

nLIGHT 的掺铒光纤的有效核心面积是多少?

掺铒光纤的有效纤芯面积取决于纤芯直径和纤芯数值孔径。根据假设标称芯直径和 NA 的模拟,可以预期 芯的有效面积在以下范围内:

纤维几何结构标称有效面积[(m²)]

Erxxx-4/125 26. . . 32

Erxxx-8/125 60。. . . 70

*适用于 1500 nm 至 1600 nm 的波长范围

nLIGHT 的掺铒光纤的非线性系数是多少?

根据光纤几何结构,可以预期以下标称非线性折射率:

光纤几何结构标称非线性折射率 n2[(cm²/W)]

Erxxx-4/125 2.0•10.0-16。。。2.2 • 10.0-16

Erxxx-8/125 2.4•10.0-16。。。2.5 • 10.0-16

*适用于 1500 nm 至 1600 nm 的波长范围

nLIGHT 掺铒光纤的铒离子密度是多少?

考虑到基本模式与纤芯的重叠,并根据光纤类型,可以预期以下铒离子密度:

纤维型铒离子密度[(m-3)]

Er16-8/125 6.8 • 10.024

Er30-4/125 2.1•10.025

Er40-4/125 3.5•10.025

Er80-8/125 3.9 • 10.025

Er110-4/125 8.4•10.025

*适用于 1500 nm 至 1600 nm 的波长范围

你们提供与你们的掺铒光纤相匹配的无源光纤吗?

我们不为我们的掺铒光纤提供专门的色散工程匹配无源光纤。标准电信光纤通常与我们的铒产品兼容。

您的掺铒光纤在 1300nm 处的背景损耗是多少?

请联系 nLIGHT 光纤代表,以获取光纤在 1300 nm 处的测量背景损耗。请在询价时提供您光纤的光纤代 码。

nLIGHT 掺铒光纤的纤芯直径和掺铒直径是多少?

标称芯径和掺铒直径如下:

光纤型标称纤芯和掺铒直径[(m)]

Erxxx-4/125 3.5

Erxxx-8/125 7.6

nLIGHT 掺铒光纤的自发辐射寿命是多少?

对于我们所有的掺铒光纤, 自发辐射寿命可以假定为 9 ms 左右。

nLIGHT 掺铒光纤中淬火离子(铒团簇)的比例是多少?

淬火离子的分数 (铒团簇) 如下所示:

淬火离子的纤维型分数

Er30 xxx 4.80%

Er40 xxx 7.0%

Er80 xxx 14.0%

Er110 xxx 16.0%

您建议您的掺铒光纤使用什么长度的光纤?

光纤的 z 佳长度取决于应用, 理想情况下应根据模拟确定, 并考虑到精确的设计。当假设 C 波段 (L 波段) 应用的总吸收为 70 dB (600 dB) 时,可获得初始估计值。因此,光纤长度为:

1530nm[dB/m]下的光纤类型标称吸收

光纤型号	1530nm 下的标称吸收[dB/m]	C 波段应用长度[(m)]	L 波段应用长度[(m]
Er16-8/125	16	4.5	38
Er30-4/125(HC)	30	2.3	20
Er40-4/125	40	1.8	15
Er80-8/125	80	0.9	7.5
Er110-4/125	110	0.6	7.5

