确定分子轨道特性主要有飞秒激光光谱学和扫描探针显微镜等方法,这些方法引起了研究人员的广泛兴趣,但有局限性。例如,基于超短激光脉冲驱动的分子高次谐波辐射只限于研究简单的气体分子,基于扫描探针显微镜的方法需要极低温条件以防止分子扩散。...
目前主流光计算架构按其技术路径大致可分为平面集成式和自由空间互连式两种。其中,平面集成式方案主要基于马赫-曾德干涉仪、微环谐振器、波导调制器等基本单元器件实现矢量-矩阵乘法、导向逻辑、伊辛机、脉冲神经网络及储备池计算等。...
高强度飞秒激光在介质中传输时,在多种非线性效应的共同作用下,可以克服衍射极限进行自引导传输,并产生等离子体通道。这一现象被称为飞秒激光成丝。凭借钳制光强高、传输距离远、可在复杂大气环境中穿行的优势,飞秒激光成丝在远程大气污染监测方面展现出巨...
如何获得高质量、高精度的激光是激光技术基础研究和应用研究中广受关注的课题,而人工智能算法正是实现激光光束质量预测和调控的有效手段。针对现有简单仿真模型对复杂光学系统预测能力不足的问题,哈尔滨工业大学刘国栋团队将深度神经网络与Frantz-N...
高功率飞秒激光在太赫兹产生、阿秒脉冲产生和光学频率梳等科研领域和工业领域有着重大应用价值。基于传统块状增益介质的锁模激光器在高功率下受到热透镜效应的限制,目前输出的最大功率在20 W左右。...
目前,常用的细胞捕获方法大多数与微流控技术相结合,主要包括单光束激光法、介电泳、声镊及磁镊等。介电泳捕获的原理是使细胞在非均匀电场极化,从而在介电泳力的作用下运动或者被势阱限制。声镊则是利用超声驻波产生声压,实现对单细胞的操纵和捕获。...
双光子激光直写是一种新兴的微纳加工手段。该技术利用飞秒激光使光刻胶在激光焦点位置发生双光子聚合,特征尺寸可达百纳米级,结合压电位移台或激光扫描器件可实现高精度任意三维结构制备。目前,该技术已被广泛应用在微纳光学、材料、生命科学、微流控、微机...
线结构光法是将线状结构光投射到被测物体表面,形成由被测物体表面形状所调制的光条三维图像,将线激光轮廓仪与精密运动平台组合,按照规划轨迹进行运动,可实现目标区域的高效高精度三维形貌测量,具有系统稳定、结构紧凑、精度高、量程大等优点,在三维测量...
量子点激光器在半导体激光器技术领域具有显著优势,相比传统的量子阱器件展现出更优异的性能表现。这些微观结构在三个维度上限制电子和空穴,产生独特的光学和电子特性,使其在高功率应用和先进光通信中表现卓越[1]。...
【资讯】基于微腔的激光自注入锁定技术——挑战肖洛汤斯线宽极限
激光技术发明60多年来,人类的社会生活发生了深刻的变化,这项技术在科技、医学、工业等领域都有着广泛应用。随着相干光学通信、光学原子钟、引力波测量等前沿科学技术的兴起和研究的不断深入,具有超低噪声且长期稳定的窄线宽激光成为上述高精密测量领域的...
波分复用(WDM)核心机理:通过不同波长光载波在单根光纤中并行传输,提升容量。主要分为:粗波分复用(CWDM):波长间隔20nm(1270~1610nm),适用于城域网接入层,成本低但信道数少(≤18波)。密集波分复用(DWDM):波长间隔...
目前研究此类疾病致病机理的手段之一是以昆虫为模式生物,果蝇、飞蝗等昆虫在心脏发育过程中具有与人类相似的基因调控机制,且具有发育周期短、可塑性强等特性,已成为研究心脏功能及心脏疾病致病基因的有力工具。光学相干层析技术技术(OCT)因具有无创、...