通过偏振敏感的超构原子设计,对以特定偏振态入射和出射的光引入独立的相位调控,从而实现偏振复用的多功能器件,是超构表面相较于传统光学元件的重要优势之一。...
飞秒激光具有超短脉冲宽度和超高峰值功率等特点,是现代极端制造和超精密制造领域的重要工具之一。飞秒激光微加工技术具有热效应低、空间分辨率高、非接触加工等优点。特别地,飞秒激光可以作用任意给定的材料,在材料表面直接制备出不同类型的微米/纳米多级...
大数据时代,海量数据的产生和积累对存储性能提出了更高的要求。如何实现长期稳健、绿色节能的数据存储已成为现代社会亟需解决的问题。光存储方式因其在成本、能耗、可靠性以及使用寿命等方面具有独特优势,成为未来信息存储领域的重要发展方向之一。其中,以...
受限于地面引力波探测器的臂长及振动噪声,激光干涉引力波天文台(LIGO)等地面探测器主要关注kHz频段的引力波信息。为探测更为丰富的mHz频段引力波,如中等质量黑洞并合及中等质量黑洞双星绕转等,空间引力波探测计划应运而生,主要任务包括欧美的...
铌酸锂(LiNbO3)由于其优异的电光和非线性光学特性、相对较高的折射率和较宽的透明窗口,自20世纪60年代以来一直被广泛应用于光子学领域。近年来,随着通过离子切片制备的商业化薄膜铌酸锂晶圆的出现,以及加工制备技术的快速发展,基于薄膜铌酸锂...
飞秒激光双光子聚合(TPP)技术能够实现亚微米精度的真三维加工,十分适合制备上述这种具有复杂形貌的三维微结构。传统双光子聚合技术采用单点直写曝光方案制备微结构,其效率较低。高效率加工需要昂贵、精密的运动控制系统配合,这限制了相关制造技术的实...
【资讯】表面增强拉曼光谱(SERS)作为一种光学无损分析技术
表面增强拉曼光谱(SERS)作为一种光学无损分析技术,因其高灵敏度与强特异性被广泛应用于环境检测、医学诊断等多种领域。SERS衬底一般采用金属纳米结构耦合光场形成局域表面等离激元共振(LSPR),显著增强了拉曼散射截面。...
随着半导体工业的发展,光刻分辨率限制了极大规模集成电路制造集成度的进一步提升。在采用193 nm光刻技术实现32 nm甚至22 nm节点后,光刻技术的发展遇到了瓶颈。为了进一步减小芯片的特征尺寸,采用更短波长的极紫外(EUV)光刻技术应运而...
本文聚焦激光融合制造,从全局视角讨论该工艺在柔性微纳传感器制造中的应用形式,依次介绍了激光增材、等材与减材三种制造方法,并重点分析加工机理与典型目标材料,突出了激光融合制造在柔性微纳传感中的技术优势。之后具体展示了激光融合制造在柔性物理、化...
显微成像系统,显微镜,成像系统,目前的超分辨荧光显微技术的分辨率、速度、成像深度等因素不易兼得,虽然可以通过优化显微镜硬件设置在一定程度上解决和平衡,但也无法克服其物理限制。...
超短脉冲激光器,脉冲激光器,飞秒激光器,超短超强脉冲的出现,为人们以极高时间分辨研究微观超快动力学过程提供了可能,推动了人们对光与物质相互作用的理解。微观范畴内,分子转动过程时间尺度在皮秒量级,分子振动过程时间尺度在飞秒量级。而原子、分子、...
飞秒光频梳在时域上由相同间距的超短脉冲串构成,频域上由一系列离散、等间距且具有稳定相位关系的频率分量组成,可以实现原子钟精度的绝对频率测量,是天然的时频基准。飞秒光频梳在精密测量、光谱学、冷原子等相关领域中有着重要的应用意义。...