飞秒激光作为一种具有高峰值功率的“冷加工”手段,在实现纳米材料的原位图案化生长方面具有独特的优势。本文对飞秒激光诱导纳米材料的图案化生长的研究进展进行了综述,揭示了该领域所面临的挑战,并展望了该领域的发展趋势。...
冷原子具有量子效应显著且可精准控制的特点,是研究多体量子理论和光与物质相互作用的理想体系。强激光场是探索特殊环境中奇异量子现象以及对量子规律调控的重要手段。反应显微谱仪是原子分子领域先进的全空间多粒子符合探测技术,具有对粒子动量分布精密成像...
共聚焦显微镜是生物学、生命科学等领域中观察细胞尺度的结构的重要仪器。通过与样品面共轭的针孔对离焦杂散光的限制,共聚焦显微镜可以实现接近由衍射成像系统孔径导致的阿贝衍射极限分辨率的成像。...
全固态连续波单频激光器以其结构紧凑、噪声低和光束质量好等优点被广泛应用于科研、**、医疗、工业等领域。但是受到激光晶体自身荧光光谱的限制,激光的发射波长只能限制在特定的范围内,不能满足快速发展的科学研究需要。因此,亟需探索新的理论设计、技术...
近红外(NIR)视觉探测器和相机在成像、传感和显示等高科技技术中发挥着至关重要的作用。基于护目镜或双筒望远镜的近红外相机对夜视、医疗和农业成像尤为重要。在传统的近红外相机中,近红外光(700?2500 nm)通过光电阴极被吸收,导致电子放电...
报道了一种利用未知散射介质突破成像系统衍射极限的技术,通过发掘由随机散射导致的光场角谱增量,利用图像测度引导的波前整形技术,实现了突破衍射极限3.39倍的超分辨成像。成像范围覆盖4倍记忆效应区间,超分辨成像在透镜系统6.6倍景深中保持有效。...
中红外氟化物光纤超短脉冲激光在半导体材料加工、超连续泵浦、多光子显微镜、强场物理等方向有着广阔的应用前景,成为近年来激光技术发展的重要前沿方向之一。...
强超短激光一般指峰值功率大于1 TW(1 TW = 1012 W),脉冲宽度小于100 fs (10-15 s)的激光,它的出现为人类提供了前所未有的极端物理条件与全新实验手段。例如,2016年,中科院上海光机所在国内首次成功利用超强超短激...
结构照明显微镜(SIM) 是一种能够获得宽视场、高时间分辨率和低光毒性的方法。标准SIM大约可将空间分辨率提高到光学系统衍射极限的两倍。因为SIM旨在实现非常高的空间分辨率,所以DOF通常非常小,这意味着SIM需要高水平的焦距控制,限制了显...
【资讯】惯性约束聚变中X射线烧蚀早期过程中的高次谐波产生 | ICF新知
在惯性约束聚变中,内爆性能的退化很大程度上归因于流体力学不稳定性,而材料界面瑕疵(不稳定性种子)是决定流体力学不稳定性的关键因素之一。因此解析内爆早期过程中材料界面瑕疵演化的物理规律具有重要科学意义。本期“ICF新知”,上海交通大学吴栋副教...
自1990年双光子显微镜(Two-photon microscopy, 2PM)被首次报道以来,基于飞秒激光的非线性效应,双光子显微镜相较于常规连续光激发的显微镜(如共聚焦显微镜),具有两个明显的优点:①双光子激发波长更长,一定程度上可减少...